Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 128(6): 1085-1097, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38294200

RESUMO

The complexation behavior of carbamoylmethylphosphine oxide ligands (CMPO), a bifunctional phosphine oxide, and their substituted derivatives with Ce(III), Eu(III), Th(IV), U(VI), and Am(III) was probed at the density functional theory (DFT) level. The enhanced extraction of trivalent rare earth elements by the 2-diphenylphosphinylethyl derivative over the conventional CMPO ligand is identified due to the availability of an additional P═O donor group in the former. In addition, the orbital and dispersive interactions play a vital role in the preference of Th(IV) over U(VI) during extraction using CMPO ligands. The better complexing ability of ligands having long alkyl chain substituents at the P atom is justified due to the observed enhanced dispersion interactions in these systems.

2.
J Phys Chem A ; 127(32): 6722-6731, 2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37540583

RESUMO

The effect of cyclic and aromatic substituents on the complexation behavior of phosphine oxide ligands with Am(III) and Eu(III) was investigated at density functional theory (DFT) and domain-based local pair natural orbital coupled-cluster (DLPNO-CC) levels. Combining DFT with accurate coupled cluster methods, we have evaluated the dispersion energy contributions to the complexation energies for trivalent Am and Eu complexes for the first time. Irrespective of the nature of substituents on the P atom, the electronic structure of the P═O group remains identical in all of the ligands. The study reveals the importance of dispersion interactions during complexation and is estimated to be more significant for Am(III) than for Eu(III) complexes.

3.
Inorg Chem ; 61(33): 13047-13057, 2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-35942987

RESUMO

The electronic structure and complexation behavior of methyl-substituted phosphinic acids with U(VI) and Pu(IV) were explored by applying quantum chemical methods. In contrast to Ingold's classification, our results indicate that the methyl group is electron-withdrawing, reducing the phosphoryl group electron density in substituted phosphinic acids. The magnitude of the computed complexation energy values increases along with the series, PA → MPA → DMPA, and MP → MMP → MDMP, implying an increasing complexation tendency upon methyl group substitution for both U(VI) and Pu(IV) complexes. One of the nitrate groups in UO2(NO3)2•2L complexes (L = PA, MPA, and DMPA) is in monodentate coordination mode due to the additional stability gained from O2N-O···H hydrogen bonding interactions with the acidic H atoms of respective ligands. The calculation indicates marginally stronger metal-ligand interactions in Pu(IV) complexes compared to that in U(VI), which is supported by the computed complexation energies, M-OP bond lengths, ν(P═O), the extent of metal-ligand charge transfer, and properties of M-OP bond critical points. The energy landscape of substituted phosphinic acid ligands is further analyzed within the framework of the activation strain model to explain the energetic preference of certain conformers.

4.
Dalton Trans ; 51(9): 3557-3571, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35143598

RESUMO

A set of four new functionalized MOFs, namely MOF-LIC-DPPC, MOF-LIC-GA, MOF-LIC-PCA and MOF-LIC-SA, were synthesized via the post-synthetic modification (PSM) strategy using MOF-LIC-1 for efficient extraction of U(VI) and Th(IV) from an aqueous medium. FTIR, powder XRD, TGA and SEM-EDX were employed for characterization of the functionalized MOFs. Sorption studies for U(VI) and Th(IV) were performed by monitoring the pH and contact time. Interestingly, the modified MOF-LIC-SA displayed rapid (∼5 min) and efficient extraction towards U(VI) and Th(IV) from an aqueous medium and modified MOF-LIC-DPPC displayed enhanced thermal stability (600 °C) compared with the parent MOF-LIC-1 (450 °C). These studies revealed that the grafted functionalities on MOF-LIC-1 possess enhanced sorption efficiency towards U(VI) and Th(IV) as well as thermal stability. MOF-LIC-SA exhibited the highest sorption capacity towards U(VI) and Th(IV), viz. 298 mg g-1 (pH 6) and 149 mg g-1 (pH 6), respectively. Leaching, recyclability, and radiation stability studies were also performed using MOF-LIC-1 MOFs. Additionally, we investigated the nature of U(VI) interactions on MOFs by applying density functional theory (DFT). PSM MOFs with various functionalities display high selectivity and efficient extraction of U(VI) and Th(IV) over a wide pH range (2-9) and also exhibit easy recovery of metal ions from MOFs. These studies reveal that U(VI) and Th(IV) can be extracted from aqueous streams in a pH range from 6 to 8 and potential applications of these MOFs include recovery of U(VI) and Th(IV) from mine water, sea water, etc. The studies reported in the present work also have extensive potential applications for environmental concerns as well as in the nuclear industry.

5.
J Phys Chem A ; 125(44): 9680-9690, 2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34710329

RESUMO

Deep eutectic solvents (DESs) based on metal halide salts are highly catalytic, low toxic, reusable, cost-effective, and have higher thermal stability than their analogue ionic liquids (ILs). In this work, we have reported the formation mechanism of metal salt-based DESs at the molecular level along with their charge-transfer analysis and thermodynamics associated with their formation using density functional theory. The DES systems analyzed in the present work were choline chloride and tin(II)chloride (DES1) and choline chloride and zinc(II)chloride (DES2), both in a molar ratio of 1:2, respectively. An excellent correlation is obtained between the theoretically calculated IR spectra of the DES systems and the previously reported experimental findings for the formation of the complex systems. The DESs were found to be stable systems due to traditional hydrogen bonding and electrostatic interactions resulting in the ionic species [Sn2Cl5]- and [Zn2Cl5]- and are elucidated with the help of electronic structure calculations. CHELPG partial charge analysis and natural bond orbital analysis suggest a charge transfer from Cl- (chloride) to Ch+ (choline) and metal salts in the DES structures. The atom-in-molecules and noncovalent interaction (NCI) analysis suggest a strong electrostatic interaction within the DES2 system as compared to DES1. Higher stability and reactivity are observed in the DES2 system based on the frontier molecular orbital analysis. Our analysis offers important insights into the formation mechanism of these economic IL analogues.

6.
J Phys Chem A ; 124(38): 7805-7815, 2020 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-32856911

RESUMO

The electronic structure of ligands with phosphoryl and carbonyl binding sites and their complexation behavior with uranyl nitrate were investigated using density functional theory (DFT). The quantum chemical calculations indicate that the electronic charges on both phosphoryl and carbonyl groups are more polarized toward oxygen atoms in isolated ligands. This effect is predominant in the case of complexes of the former. Both P═O and C═O groups are positively charged with the exception in methylisobutylketone (MIBK), where the C=O group is virtually neutral. The fragment molecular orbital analysis suggests that during complexation, a certain amount of charge transfer occurs from the filled pπ-orbitals [πx(CO/PO) and πy(CO/PO)] of the ligand to 5f, 6d, and 7s orbitals of the uranium atom (fσ* and dsσ*). The NBO analysis reaffirms the charge transfer mechanism. The observed red shift in ν(C═O) and ν(P═O) identified in the simulated infrared spectrum of the corresponding complexes implies a moderate weakening of both carbonyl and phosphoryl bonds upon complexation. The atoms in molecules (AIM) analysis suggests a stronger phosphoryl binding compared to carbonyl interactions and an ionic U-O bond. The estimated complexation energies are considerable for phosphoryl ligands compared to those of the carbonyl analogue, with a reasonably large value derived for tri-n-butyl phosphate (TBP). The energy decomposition analysis marked significant stabilizing orbital interactions for phosphoryl ligands. The contributions of estimated dispersion energies are considerable in all complexes and extensively depend on the alkyl unit.

7.
J Phys Chem A ; 120(24): 4201-10, 2016 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-27248966

RESUMO

Tri-n-butyl phosphate (TBP), used as the extractant in nuclear fuel reprocessing, shows superior extraction abilities for Pu(IV) over a large number of fission products including Zr(IV). We have applied density functional theory (DFT) calculations to explain this selectivity by investigating differences in electronic structures of Pu(NO3)4·2TBP and Zr(NO3)4·2TBP complexes. On the basis of our quantum chemical calculations, we have established the lowest energy electronic states for both complexes; the quintet is the ground state for the former, whereas the latter exists in the singlet spin state. The calculated structural parameters for the optimized geometry of the plutonium complex are in agreement with the experimental results. Atoms in Molecules analysis revealed a considerable amount of ionic character to M-O{TBP} and M-O{NO3} bonds. Additionally, we have also investigated the extraction behavior of TBP for metal nitrates and have estimated the extraction energies to be -73.1 and -57.6 kcal/mol for Pu(IV) and Zr(IV), respectively. The large extraction energy of Pu(IV) system is in agreement with the observed selectivity in the extraction of Pu.

8.
J Phys Chem A ; 119(18): 4237-43, 2015 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-25831095

RESUMO

We investigated the symmetry breaking mechanism in cubic octa-tert-butyl silsesquioxane and octachloro silsesquioxane monocations (Si8O12(C(CH3)3)8(+) and Si8O12Cl8(+)) using density functional theory (DFT) and group theory. Under Oh symmetry, these ions possess (2)T2g and (2)Eg electronic states and undergo different symmetry breaking mechanisms. The ground states of Si8O12(C(CH3)3)8(+) and Si8O12Cl8(+) belong to the C3v and D4h point groups and are characterized by Jahn-Teller stabilization energies of 3959 and 1328 cm(-1), respectively, at the B3LYP/def2-SVP level of theory. The symmetry distortion mechanism in Si8O12Cl8(+) is Jahn-Teller type, whereas in Si8O12(C(CH3)3)8(+) the distortion is a combination of both Jahn-Teller and pseudo-Jahn-Teller effects. The distortion force acting in Si8O12(C(CH3)3)8(+) is mainly localized on one Si-(tert-butyl) group, while in Si8O12Cl8(+) it is distributed over the oxygen atoms. The main distortion forces acting on the Si8O12 core arise from the coupling between the electronic state and the vibrational modes, identified as 9t2g + 1eg + 3a2u for the Si8O12(C(CH3)3)8(+) and 1eg + 2eg for Si8O12Cl8(+).

9.
Chemistry ; 20(28): 8575-8, 2014 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-24898514

RESUMO

We report the synthesis of [H2 B(pz)2 PR](+) , [H2 C(pz)2 PR](+2) , [HB(pz)3 P](+2) , and [HC(pz)3 P](+3) (H2 B(pz)2 =bis(pyrazolyl)borate; H2 C(pz)2 =bis(pyrazolyl)methane; HB(pz)3 =tris(pyrazolyl)borate; HC(pz)3 =tris(pyrazolyl) methane; R=Ph, Cy or Et2 N) by reaction of the corresponding neutral or anionic ligands with chlorophosphines in the presence of TMSOTf. The structures of these compounds were determined by X-ray crystallographic analysis and the nature of their bonding was examined using density functional theory.

10.
J Am Chem Soc ; 135(50): 18815-23, 2013 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-24308636

RESUMO

Very often ligands are anionic or neutral species. Cationic ones are rare, and, when used, the positively charged groups are normally appended to the periphery of the ligand. Here, we describe a dicationic phosphine with no spacer between the phosphorus atom and the two positively charged groups. This structural feature makes its donor ability poorer than that of phosphites and only comparable to extremely toxic or pyrophoric compounds such as PF3 or P(CF3)3. By exploiting these properties, a new Au catalyst has been developed displaying a dramatically enhanced capacity to activate π-systems. This has been used to synthesize very sterically hindered and naturally occurring 4,5-disubstituted phenanthrenes. The present approach is expected to be applicable to the development and improvement of many other transition metal catalyzed transformations that benefit from extremely strong π-acceptor ligands. The mechanism of selected catalytic transformations has been explored by density functional calculations.

12.
J Am Chem Soc ; 135(17): 6677-93, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23597060

RESUMO

Using cinchona alkaloid-derived primary amines as catalysts and aqueous hydrogen peroxide as the oxidant, we have developed highly enantioselective Weitz-Scheffer-type epoxidation and hydroperoxidation reactions of α,ß-unsaturated carbonyl compounds (up to 99.5:0.5 er). In this article, we present our full studies on this family of reactions, employing acyclic enones, 5-15-membered cyclic enones, and α-branched enals as substrates. In addition to an expanded scope, synthetic applications of the products are presented. We also report detailed mechanistic investigations of the catalytic intermediates, structure-activity relationships of the cinchona amine catalyst, and rationalization of the absolute stereoselectivity by NMR spectroscopic studies and DFT calculations.


Assuntos
Alcaloides de Cinchona/química , Compostos de Epóxi/química , Peróxido de Hidrogênio/química , Alcenos/química , Aminas/química , Catálise , Ciclização , Cicloexanonas/química , Cromatografia Gasosa-Espectrometria de Massas , Hidrólise , Iminas/química , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Compostos de Amônio Quaternário/química , Espectrometria de Massas por Ionização por Electrospray , Estereoisomerismo , Relação Estrutura-Atividade , Ácido Trifluoracético/química
15.
J Am Chem Soc ; 134(37): 15331-42, 2012 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-22924963

RESUMO

Readily available phosphoramidites incorporating TADDOL-related diols with an acyclic backbone turned out to be excellent ligands for asymmetric gold catalysis, allowing a number of mechanistically different transformations to be performed with good to outstanding enantioselectivities. This includes [2 + 2] and [4 + 2] cycloadditions of ene-allenes, cycloisomerizations of enynes, hydroarylation reactions with formation of indolines, as well as intramolecular hydroaminations and hydroalkoxylations of allenes. Their preparative relevance is underscored by an application to an efficient synthesis of the antidepressive drug candidate (-)-GSK 1360707. The distinctive design element of the new ligands is their acyclic dimethyl ether backbone in lieu of the (isopropylidene) acetal moiety characteristic for traditional TADDOL's. Crystallographic data in combination with computational studies allow the efficiency of the gold complexes endowed with such one-point binding ligands to be rationalized.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...